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Abstract

This paper addresses free wave propagation and attenuation in elastic plates loaded by a quiescent viscous compressible

fluid. To validate the adopted fluid model, an elementary problem of wave propagation in a layer of fluid is considered.

Then wave propagation in a conventional Kirchhoff plate and in a sandwich plate loaded by a layer of viscous

compressible fluid is analysed. The location of dispersion curves in each of these three cases is determined and compared

with each other. The viscosity-induced attenuation of otherwise propagating ‘fluid-originated’ and ‘structure-originated’

waves is quantified. The parametric studies are conducted to explore the influence of, e.g., the width of a fluid layer or a

stiffness ratio of the materials of skin and core plies in a sandwich plate on the wave attenuation.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of time harmonic linear wave propagation in elastic structures under heavy fluid loading is
traditionally considered within the framework of a theory of compressible inviscid fluid (a standard model of
the acoustic medium) (see, for example, classical texts [1,2]). This model is perfectly valid for analysis of
vibrations of elastic structures submerged into an unbounded volume of the fluid (e.g., a ship hull in water) or
vibrations of thin-walled fluid conveying structures (e.g., a water-filled tube). However, in some situations,
which are rather typical for various industrial applications (for example, when a capillary is considered), wave
propagation occurs in a narrow gap and the attenuation effect produced by viscosity of a fluid cannot be
ignored. Other examples of such a situation are narrow slits and small enclosures in hearing aides, small
transducers, etc. The regime of fluid motion in these cases is laminar (no mean flow is taken into account) and
Navier–Stokes equations may be linearized. Then it is possible to apply a theory suggested in Refs. [3,4] to
describe wave motion in a fluid.

Although the effects of fluid viscosity have been carefully studied in relation to sound generation
mechanisms in a fluid flowing along the rigid boundary (see, for example, Ref. [5]) the viscosity-induced
attenuation of waves travelling in a fluid wave guide has been studied in fewer publications. For example, the
wave propagation in a layer of the compressible viscous fluid between absolutely rigid walls has been analysed
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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in Ref. [6] and it has been found that the wave attenuation in water is controlled by Reynolds number,
specifically, by the quantity

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=oH2

q
(n is a coefficient of kinematic viscosity, o is a circular frequency, 2H is

the width of a fluid layer). This result suggests that propagation of low-frequency purely acoustical waves in a
narrow gap filled with water may be substantially suppressed by its viscosity. Apparently, this effect is
dramatically amplified for highly viscous fluid as oil, etc.

The replacement of a rigid wall by an elastic structure may substantially change the scenario of wave
propagation in a coupled wave-guide in comparison with wave propagation in sub-systems. For example, the
acoustic layer between a conventional Kirchhoff plate and a rigid wall (see Ref. [7]), supports only one coupled
travelling wave at an arbitrary low frequency, whereas two propagating waves co-exist in sub-systems
considered individually (the duct mode in an acoustic layer bounded by rigid walls and the flexural wave in an
elastic plate). The fluid–structure interaction conditions in this case involve continuity of normal velocities at
the fluid–structure interface and formulation of the contact acoustic pressure as the loading term (distributed
transverse force) in the equation of motion of a structure. As soon as the model of a viscous fluid is used,
interfacial conditions are formulated for both the normal and the tangential velocity components and fluid
loading produces the distributed transverse force and the distributed bending moment acting at the structure.
In the case of a conventional thin Kirchhoff plate, the compliance of a plate (the fluid boundary) in tangential
direction is relatively small, and these additional interfacial conditions are not dominant.

The situation is quite different in the case of a sandwich plate. As is shown in Ref. [8], a sandwich plate
supports propagation of two waves. The first one is of dominantly flexural type and it is similar to its
counterpart in a Kirchhoff plate. The second one, which cuts on at a relatively low frequency, is of dominantly
shear type (due to the large compliance of a core ply). The amplitude of the tangential velocity component of
the surface of skin ply in the course of propagation of this wave may be relatively large and the role of
tangential interfacial conditions (which are involved only in the case of viscous fluid) may be dominant.

To the best of the authors’ knowledge, the role of effects of fluid viscosity in propagation of low-frequency
waves in elastic thin-walled structures under heavy fluid loading produced by a relatively thin layer of the fluid
has not been considered in the literature. Therefore, it is expedient to compare the viscosity-induced effects in
three above-mentioned model problems of wave propagation in a layer of viscous compressible fluid: when the
layer is bounded by rigid walls at both sides, when it is bounded by a rigid wall and a Kirchhoff plate and
when it is bounded by a sandwich plate and a rigid wall. Solutions of these problems and discussion of the
obtained results constitute the subject of this paper.

Naturally, effects of fluid viscosity play an important role in dynamics of nano- and micro-electro-
mechanical systems. Discussion of modelling of propagation of Love and Rayleigh waves in a solid immersed
in a viscous fluid may be found in publications related to this area of research (see, for example, Ref. [9] and
references provided there). The same holds true as regards use of Reynolds equation for analysis of fluid
motion (see Ref. [10]). However, these issues lie well beyond the scope of the present contribution, which is
concerned only with analysis of attenuation of relatively low-frequency long waves in fluid-loaded thin plates.

The paper is structured as follows. A model of dynamics of a quiescent viscous fluid is introduced in Section
2. Its application for analysis of wave propagation in a fluid layer between rigid walls (used as a reference case)
is presented in the same section. A coupled problem of wave propagation in a Kirchhoff plate loaded by a
layer of viscous compressible fluid (with a rigid wall as the second boundary of the layer) is solved in Section 3.
A case, when a layer of viscous compressible fluid is bounded at one side by a rigid baffle and by an elastic
plate of sandwich composition at another side, is considered in Section 4. Parametric studies of wave
attenuation in the case of fluid-loaded sandwich plate are presented in Section 5. Theoretical findings and
results of computations reported in the paper are summarized in Section 6.

2. Model of dynamics of quiescent viscous fluid: wave propagation in a rigid duct filled with a viscous

compressible fluid

In this paper, the problem of wave propagation in a layer of viscous fluid in the absence of a mean flow is
considered. Then it is possible to use linearized Navier–Stokes equations [11,12] to describe dynamics of a fluid

rfl
q~v
qt
� ~mr2~vþ ~rp� ðlþ ~mÞ~rð~r �~vÞ ¼ 0, (1)
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qr
qt
þ rfl~r �~v ¼ 0, (2)

r̂ ¼ �pþ l~r �~v
� �

Êþ 2 ~mê,

2ê ¼ ~r~vþ ~r~v
� �T

, (3)

qp

qr
¼ c2fl, (4)

where rfl is the fluid density, cfl is the sound speed, p is the pressure perturbation, r is the density perturbation,
~v is the velocity vector, r̂ and ê are the stress and strain rate tensors, Ê is a unit tensor, ~m and n are dynamic and
kinematic coefficients of viscosity, ~m ¼ rfln, l is the second coefficient of viscosity and l ¼ �2

3
m
_
(see Ref. [12]).

The velocity field is sought in the following form (this formulation is similar to its counterpart in the theory
of elasticity and it has been used in Refs. [3,4]):

~v ¼ ~rjþ ~r � ~w. (5)

In the plane problem formulation (z is the vertical axis and x is the horizontal axis as shown in Fig. 1),
cx ¼ cz ¼ 0, so that c � cy

vx ¼
qj
qx
�

qc
qz
; vz ¼

qj
qz
þ

qc
qx

. (6)

The potentials j and c [3,4] satisfy uncoupled equations:

1þ
4m̂

3rflc
2
fl

q
qt

� �
r2 �

1

c2fl

q2

qt2

� �
j ¼ 0, (7)

nr2 �
q
qt

� �
c ¼ 0. (8)

Then the pressure is expressed only via the scalar potential:

p ¼ rfl
4m̂
3rfl
r2 �

q
qt

� �
j. (9)

Normal and shear stresses are formulated as

szz ¼ �pþ 2 m
_ qvz

qz
, (10)
Fig. 1. A fluid layer between rigid walls.
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tzx ¼ m
_ qvz

qx
þ

qvx

qz

� �
. (11)

Taking into account Eqs. (6) and (9), two last equations are written as

szz ¼ �rfl
4n
3
r2 �

q
qt

� �
jþ rfln

q2j
qz2
þ

q2c
qx qz

� �
, (12)

txz ¼ rfln 2
q2j
qx qz

�
q2c
qz2
þ

q2c
qx2

� �
. (13)

To study the influence of viscosity on propagation of waves in the fluid layer bounded by rigid walls,
boundary conditions at their surfaces are formulated as

z ¼ �H

vx ¼
qj
qx
�

qc
qz
¼ 0;

vz ¼
qj
qz
þ

qc
qx
¼ 0

8>><
>>: (14)

(the thickness of viscous fluid layer is 2H, see Fig. 1).
Solution of system (7), (8) and (14) is sought in the form

j ¼ AðzÞ exp ðkx� iotÞ; c ¼ BðzÞ exp ðkx� iotÞ. (15)

In what follows, Eq. (7) is simplified by neglecting the second term, which contains the second viscosity,
4m̂=3rflc

2
fl. Then the conventional wave equation describes behaviour of the velocity potential j. Standard

algebra gives the following dispersion equation in the non-dimensional form:

ðab cos a sin b� K2 sin a cos bÞðab sin a cos b� K2 cos a sin bÞ ¼ 0. (16)

Here following notations are introduced:

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ O2

p
; b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ i

O
m

s
; K ¼ kH ; O ¼

oH

cfl
; m ¼

n
cflH

. (17)

The factorized structure of dispersion equation (16) highlights the existence of symmetric and skew-
symmetric modes, which naturally follows from the symmetry of the layer with respect to the x-axis
(see Fig. 1).

The dispersion equation for symmetric modes is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ O2

p
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ O2

p	 

�

K2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ iO=m

q cos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ O2

p	 
 sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ iO=m

q� �

cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ iO=m

q� � ¼ 0. (18)

In the case OðKÞ�OðOÞ�m0, it is convenient to introduce the following scaling K ¼ ~Km0 and O ¼ ~Om0,
where ~K� ~O�1. In the limit m-0, Eq. (18) is reduced toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~K
2
þ ~O

2
q

sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~K
2
þ ~O

2
q� �

� i

ffiffiffiffiffi
m

i ~O

r
~K
2
cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~K
2
þ ~O

2
q� �

¼ 0. (19)

Then the wavenumber of a propagating wave may be presented explicitly as

K � iO 1þ
1

2

ffiffiffiffiffiffi
m
2O

r
ð1þ iÞ þ im

3

8O
þ

1

4
O

� �� �
. (20)

The solution of this problem reported in Ref. [6] is the same up to
ffiffiffi
m
p

-order term.
The second cut-on frequency of symmetric modes is defined when the condition K ¼ 0 is applied in Eq. (18)

and resulting equation is solved with respect to Ocut�on. It yields O
sym
cut�on;2 ¼ p.
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The dispersion equation for skew-symmetric waves is asymptotically reduced asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~K
2
þ ~O

2
q

cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~K
2
þ ~O

2
q� �

þ i

ffiffiffiffiffi
m

i ~O

r
~K
2
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~K
2
þ ~O

2
q� �

¼ 0. (21)

It is easy to check, that there are no propagating skew-symmetric modes in low-frequency range up to
Oskew

cut�on;1 ¼ p=2. This cut-on frequency is found exactly in the same manner as the second cut-on frequency of
symmetric propagating modes.

In the elementary case of the acoustic layer between rigid walls (m ¼ 0), dispersion equation (16) acquires
the familiar form

sin 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ O2

p
¼ 0. (22)

Naturally, its factorization yields the dispersion equation for the symmetric (with respect to the axis x, see
Fig. 1) modes

sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ O2

p
¼ 0 (23a)

and for skew-symmetric ones,

cos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ O2

p
¼ 0. (23b)

Dispersion curves defined by these equations are well-known. As is seen from comparison of Eqs. (18), (21)
and (22) in the case K ¼ 0, magnitudes of cut-on frequencies Osym

cut�on;2, O
skew
cut�on;1 are not affected by viscosity.

These dispersion equations, as well as all other ones solved in this paper, have infinitely many, in general,
complex-valued roots for any frequency parameter O. The methodology of their computation suggested in
Ref. [8] is adopted here. In effect, the original dispersion equation is replaced by its polynomial counterpart,
which is easily obtained when trigonometric functions are replaced by their polynomial approximations.
Apparently, the order of an approximate polynomial dispersion equation is controlled by the number of terms
retained in power series. Then all roots of this approximate polynomial dispersion equation can easily be
found by use, for example, Mathematica [13] symbolic manipulator. Furthermore, this manipulator is used to
search for roots of the original dispersion equation with the ‘initial guesses’ taken as roots of approximate
dispersion equation. These roots are selected in the following way: Re ðKlÞo0, or, if Re ðKlÞ ¼ 0, then
Im ðKlÞ40. This selection is based on the formulation of Sommerfeld radiation condition at infinity for purely
imaginary roots (time dependence is set to be expð�iotÞ) and decay condition for complex-valued and purely
real roots.

The influence of the viscosity on shape and location of dispersion curves is relatively weak: as is seen from
Eq. (20), the difference between wavenumber K in acoustic and viscous cases is of order

ffiffiffi
m
p

for given O. Since
the paper is concerned with wave propagation in elastic plates under heavy fluid loading, the detailed analysis
of dispersion curves for the fluid layer between rigid walls is not conducted here. However, this elementary
case is referenced in subsequent sections.

The simple result (20) suggests that the analysis of location of dispersion curves and of wave attenuation can
conveniently be split into two parts. The first one is to determine the leading order term in expansion of the
wavenumber K on the viscosity parameter m. For this purpose, it is sufficient to consider an ideal acoustic
medium, i.e., to set m ¼ 0. At this stage, it is useful to identify all propagating modes and to classify them as
structure- or fluid-originated ones. The second step of analysis is to assess the viscosity-induced attenuation of
these waves. As soon as the model of a viscous compressible fluid is used, the wave, which propagates in an
ideal acoustic medium, transforms to the ‘almost propagating’ (attenuated) type, so that its wavenumber K

becomes complex, i.e., it acquires a negative real part, as seen in Eq. (20). The magnitude of the real part of K

vanishes as viscosity parameter tends to zero, m-0. To illustrate this effect, it is natural to explore the
dependence of real parts of K upon O for these ‘almost propagating’ waves. Another measure of wave
attenuation is the ratio of the amplitude of an out-coming wave to the amplitude of an incoming wave as is
passes in x-direction along the layer of a given length (see Fig. 1). Naturally, these two measures are linked to
each other.
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The remaining sections of this paper are structured in accordance with this formulation of sub-tasks.
The solutions of problems of wave propagation in a Kirchhoff plate and in a sandwich plate loaded with a
viscous compressible fluid are reported along with studies of the location of dispersion curves, which is
virtually the same as in the case, when fluid loading is produced by an acoustic medium. The parametric
studies of the viscosity-induced effects (which may be characterized as ‘zooming in’ branches of dispersion
curves) for a Kirchhoff plate and for a sandwich plate are put together in a separate section to facilitate their
comparison.

3. Wave propagation in a Kirchhoff plate loaded by a layer of viscous compressible fluid

The problem of wave propagation in an elastic plate loaded by an unbounded volume of the acoustic
medium may be regarded as a classical problem in vibro-acoustics [1,2]. Recent advances in modelling wave
propagation in elastic fluid-loaded plates within this problem formulation are reported in Refs. [14–17].
However, in some situations outlined in Section 1 fluid loading is produced by a fluid layer. The wave
propagation problem in this case has been solved by Fahy [18] for a Kirchhoff plate loaded by a layer of the
acoustic medium. The same problem for a fluid-loaded sandwich plate has been solved in Ref. [8].
An asymptotic analysis of results reported in Ref. [18] has been performed recently in Ref. [19].

As the thickness of the layer becomes ‘sufficiently’ small, one could expect viscous effects in the fluid
(e.g., water) to become increasingly important. To assess the level, to which viscosity may alter the
fluid–structure interaction in comparison with the situation, when effects of viscosity are neglected, consider a
model problem for a plate in ‘cylindrical bending’ (see Fig. 2). An infinitely long Kirchhoff plate is loaded by a
layer of viscous compressible fluid. This layer has the thickness 2H and it is bounded by a rigid wall at the
opposite to the plate side. The equation of motion of a plate (w(x,t) is the transverse displacement of mid-
surface of the plate) is formulated as [20]:

D1
q4w
qx4
þM

q2w

qt2
¼ �szz þ

qm

qx
, (24)

D1 ¼
Eh3

12ð1� n2pÞ
¼ Eh3D̄1; M ¼ rplh, (25)

where E is Young’s modulus, np is Poisson’s ratio, rpl is density and h is the thickness of a plate.
Fig. 2. A fluid-loaded conventional plate.
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As is seen from Eq. (24), viscous fluid produces both the conventional distributed transverse force at the
surface of a plate and the distributed bending moment,

m ¼
h

2
tzx. (26)

Apparently, it vanishes as soon as the standard model of an acoustic medium is adopted.
Dynamics of the fluid is governed by Eqs. (7) and (8), with two continuity conditions at the fluid–structure

interface, z ¼ H

vx ¼
qj
qx
�

qc
qz
¼

h

2

q2w

qt qx
;

vz ¼
qj
qz
þ

qc
qx
¼

qw

qt
:

8>><
>>: (27)

The second pair of conditions at z ¼ �H is the same as in the previous case.
A solution of the problem (7),(8) and (24)–(27) is sought in the form

j ¼ AðzÞ exp ðkx� iotÞ; c ¼ BðzÞ exp ðkx� iotÞ; w ¼ D expðkx� iotÞ. (28)

Standard algebra gives the following dispersion equation in non-dimensional form:

T1 �
iPOm
48S

T2 ¼ 0. (29)

It is solved by the same method as Eqs. (18), (19) and (21). Cumbersome coefficients involved in Eq. (29) can
be found in the Appendix.

Dispersion curves are presented in Fig. 3a and b for the following set of parameters: m ¼ 10�6,
0:01pOp0:6, np ¼ 0:3, P ¼ 0.128, D ¼ 3.258, w ¼ 10 (w ¼ H=h, P ¼ rfl=rpl, D ¼ cpl=cfl), which is typical for
the combination ‘steel-water’. As already discussed, graphs shown in these figures are almost identical to those
plotted for the same plate loaded by the layer of an inviscid compressible fluid (m ¼ 0) of the same density. The
dispersion equation for such a plate can be found, for instance, in Refs. [7,18,19]. It has the following form

T1 þ PO2 cot ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ O2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2 þ O2
p ¼ 0. (30)

For the given combination of parameters, the real part of a complex-valued wavenumber of the ‘almost
propagating wave’ is very small in comparison with real parts of the wavenumbers of ‘authentically’ decaying
waves. Therefore, all dispersion curves shown in Fig. 3a and b may be attributed to the plate loaded by the
acoustic layer. Location of these curves is studied hereafter, whereas the wave attenuation due to fluid
viscosity is considered in Section 5 for all three models (fluid layer, Kirchoff plate and sandwich plate under
heavy fluid loading).

Real and imaginary parts of roots of dispersion Eq. (30) versus frequency parameter are shown in Fig. 3a
and b. Propagating waves (‘almost propagating’ waves in the case of a viscous fluid) are presented by curves 1
and 10. All other curves in this figure present evanescent waves. For example, curve 2 in Fig. 3a presents the
negative real part of the pair of complex conjugate roots with imaginary parts shown as curves 2a and b in
Fig. 3b. At O � 0:06 this pair of complex conjugate roots splits into branches 3 and 4. In the case of an
acoustic medium, they specify purely real roots. In the case of a viscous fluid, these roots acquire sufficiently
small imaginary parts. Then branches 4 and 5 merge into branch 6 at O � 0:11. Branch 6 in Fig. 3a presents
the real part of two complex conjugate roots with imaginary parts shown as branches 6a and 6b in Fig. 3b. At
O � 0:50 these roots become purely real again and branch 6 splits into branches 7 and 8. Then scenario repeats
itself as frequency parameter grows. At O � 0:58 curve 3 in Fig. 3a attains zero. This is the cut-on frequency,
at which the corresponding mode transforms from the evanescent to the propagating type. This emerged
propagating (in the case of an acoustic medium) wave is presented by curve 10 in Fig. 3b. In the case of a
viscous fluid, curve 10 in Fig. 3b presents the imaginary part of a complex-valued wavenumber. Its real part is
presented by curve 10 in Fig. 3a, which is virtually non-distinguishable from the coordinate axis.
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As mentioned, the ‘zoomed-in’ graphs presenting the negative real parts of otherwise purely imaginary roots
are displayed in Section 5.

The magnitudes of cut-on frequencies are readily found by setting K ¼ 0 in dispersion Eq. (30). The
equation, which defines cut-on frequencies, is

�
O2

w
þ P

ffiffiffiffiffiffi
O2

p
cotð2

ffiffiffiffiffiffi
O2

p
Þ
3� 2imO

3
¼ 0. (31)

Its counterpart for a layer of viscous fluid between rigid walls is readily obtained from Eq. (16)

sin 2O sin 2

ffiffiffiffiffi
iO
m

s
¼ 0. (32)

If viscosity is neglected, cut-on frequencies for the layer of an acoustic medium between rigid walls are
defined by equation

sin 2O ¼ 0. (33)

Finally, for the waveguide shown in Fig. 2 Eq. (31) is reduced as

�
O2

w
þ P

ffiffiffiffiffiffi
O2

p
cot ð2

ffiffiffiffiffiffi
O2

p
Þ ¼ 0. (34)
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The first cut-on frequency found from Eq. (34) is O � 0:5745, whereas solution of Eq. (31) gives
O � 0:5745þ 0:000000108I . Discrepancy in the magnitude of the real part of Ocut�on is of the same order as the
magnitude of its imaginary part for a viscous fluid. Naturally, this observation holds true for the difference in
magnitudes of wavenumbers calculated at the same frequency for a viscous compressible fluid and for an
acoustic medium.

It is expedient to identify modes in the coupled wave guide by overlapping dispersion curves for the plate
loaded by the fluid layer, for the plate in vacuum and for the fluid layer between two rigid walls as is shown in
Fig. 4a and b. Curves denoted by boxes (A1–A3) correspond to the ‘rigid duct’ case, curves denoted by
daggers (B1 and B2)—to the ‘dry Kirchhoff plate’ case. Curve A1 correspond to the propagating mode and
curves A2 and A3—to evanescent ones. Curves B1 and B2 presents the propagating and the evanescent mode,
respectively. Curves designated by dots are the same as in Fig. 3a and b (with the same numeration of
branches).

As is seen from Fig. 4a and b, each branch of dispersion curves for a coupled system may be identified either
as a structure-originated or as a fluid-originated one. For example, dispersion curve 1 may be called structure-
originated and its location is influenced by the presence of a fluid relatively weakly. However, the first
propagating ‘rigid duct mode’ is suppressed in a coupled wave guide. This effect is produced by the
fluid–structure interaction rather than fluid viscosity and it is in a contrast with the influence of compliant wall
on propagation of ‘rigid duct mode’ in an elastic cylindrical shell. Deformation of the shell’s wall in the
Fig. 4. Dispersion curves for a fluid-loaded plate versus their counterparts in uncoupled cases: (a) real parts and (b) imaginary parts.
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circumferential direction produced by the pressure in the shell’s ‘breathing mode’ makes propagation of this
‘fluid-originated’ mode possible. In the case of a fluid-loaded plate in cylindrical bending considered here,
the out-of-plane deformation is constrained and therefore this mode cannot propagate at low frequencies if
the wall is compliant. However, other ‘fluid-originated modes’ (which propagate in a fluid layer
when the excitation frequency exceeds its cut-on value) are not suppressed by the compliance of a plate.
Moreover, their cut-on frequencies are lowered as can be seen in comparison of locations of curve A2 and 3 in
Fig. 4a and curve 10 (which is a continuation of curve 3) in Fig. 4b. The branches A2 and B2, which represent
decaying waves in sub-systems, interact with each other so that their counterparts undergo several
transformations in the ‘intersection’ frequency range. Apparently, the set of curves 2, 4, 6 and 8 represent the
structure-originated evanescent mode (B2) and the set of curves 5–7 represent the fluid-originated evanescent
mode A2.
4. Wave propagation in a sandwich plate loaded by a layer of viscous compressible fluid

An infinitely long sandwich plate is loaded by a layer of viscous compressible fluid. This layer has the
thickness 2H and it is bounded by a rigid wall at the opposite to a plate side as shown in Fig. 5. The sandwich
plate consists of two symmetrical relatively thin, stiff skin plies and thick, compliant core ply. Dimensionless
parameters are introduced to describe the internal structure of sandwich plate: � ¼ hskin=hcore as the thickness
parameter (the ratio of thickness of each individual skin ply to the thickness of a core ply), d ¼ rcore=rskin as
the density parameter, g ¼ Ecore=Eskin as the longitudinal stiffness parameter and gg ¼ Gcore=Gskin as the shear
stiffness parameter. Hereafter, subscripts denoting parameters of skin plies are omitted. All plies are assumed
to be isotropic, g ¼ gg.

The deformation of a sandwich plate element is governed by two independent variables: a displacement of
the mid-surface w (which is the same for all plies) and a shear angle between the mid-surfaces of skin plies y.
Dynamics of a fluid-loaded plate is governed by following equations [8]:

D1
q4w

qx4
� G

qy
qx
þ

q2w

qx2

� �
þM

q2w

qt2
� I1

q4w
qx2 qt2

¼ �szz þN1
qtzx

qx
, (35a)

�D2
q2y
qx2
þ G yþ

qw

qx

� �
þ I2

q2y
qt2
¼ �N1tzx. (35b)
Fig. 5. A fluid-loaded sandwich plate.
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The elastic parameters in Eqs. (35) are (E � Eskin, h � hskin, rpl � rskin)

D1 ¼
Eh3

12ð1� n2pÞ
2þ

g
�3

	 

¼ Eh3D̄1; D2 ¼

Eh3

2ð1� n2pÞ
1þ

1

�

� �2

¼ Eh3D̄2,

G ¼
Eh

2ð1þ npÞ
1þ

1

�

� �2

gg� ¼ EhḠ; M ¼ rplh 2þ
d
�

� �
¼ rplhM̄,

I1 ¼
rplh

3

12
2þ

d
�3

� �
¼ rplh

3Ī1; I2 ¼
rplh

3

12
1þ

1

�

� �2

¼ rplh
3Ī2,

N1 ¼ h 1þ
1

2�

� �
¼ hN̄1. ð36Þ

Dynamics of the fluid is governed by Eqs. (7) and (8), with continuity condition at the fluid–structure
interface, z ¼ H, written in the form

vx ¼
qj
qx
�

qc
qz
¼ N1

q2w
qt qx

þ
qy
qt

� �
;

vz ¼
qj
qz
þ

qc
qx
¼

qw

qt
:

8>>><
>>>:

(37)

The second pair of conditions at z ¼ �H is the same as in two previous cases. It is given by Eq. (14).
A solution of the problem (7), (8), and (35)–(37) is sought in the form

j ¼ AðzÞ exp ðkx� iotÞ; c ¼ BðzÞ exp ðkx� iotÞ,

w ¼ D exp ðkx� iotÞ; y ¼ F exp ðkx� iotÞ. ð38Þ

Standard algebra gives the following dispersion equation in non-dimensional form

T1 �
iD2POm
12wS

T2 þ
N̄

2
1P2O2m2

48w2S2
T3 ¼ 0. (39)

It is solved by the same method as Eqs. (18), (19) and (21). Cumbersome coefficients involved in Eq. (39) can
be found in the Appendix.

Dispersion curves are presented in Fig. 6a and b for following parameters set � ¼ 0:25, g ¼ 0:0001, d ¼ 0:1
and np ¼ 0:3. This combination of parameters is typical for a plate made of thin steel skins and PVC core
(see Ref. [21]). Fluid loading parameters are P ¼ 0:128, D ¼ 3:258, w ¼ 10, m ¼ 10�6. Dispersion curves for the
sandwich plate loaded by the acoustic medium are almost identical to those presented in Fig. 6. Dispersion
equation for this model (sandwich plate—acoustic medium) is

T1 þ
1

w
PO2 cot ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ O2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2 þ O2
p D2

w2
D̄2K2 � D2Ḡþ

1

w2
Ī2O2

� �
¼ 0. (40)

Figs. 3 and 6 are rather similar, but (unlike the case of a conventional plate) curves 2 and 10 have appeared
in Fig. 6. They correspond to the second structure-originated dominantly shear mode. It cuts on at O � 0:32.
The cut-on frequency of the first fluid-originated mode for a sandwich plate (O � 0:44) becomes smaller than
in the case of a Kirchhoff plate (O � 0:5745). The ‘crossing’ or ‘veering’ zone of curves 10 and 11 is zoomed in
Fig. 6c and d (real and imaginary parts). As is seen, these two curves in Fig. 6d actually do not intersect
each other, but their modes are ‘swapped’ at the point ‘A’. This is a very well-known effect (see, for example,
Ref. [22]). As expected, real parts of these curves (see Fig. 6c) also ‘swap’ at the point A—‘attenuation curve’
11 (see also Section 5) of a fluid-originated mode becomes ‘attenuation curve’ 10 of structure-originated shear
mode and vice versa.
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Fig. 6. Dispersion curves for a fluid-loaded sandwich plate: (a) real parts; (b) imaginary parts; (c) real parts zoomed; and (d) imaginary

parts zoomed.
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The magnitudes of cut-on frequencies can be found from relatively simple equations, which are obtained by
setting K ¼ 0 in Eqs. (39) and (40):
	
 in the ‘acoustic medium’ case:

ḠD2 �
Ī2O2

w2

� �
�

M̄O2

w
þ P

ffiffiffiffiffiffi
O2

p
cot ð2

ffiffiffiffiffiffi
O2

p
Þ

� �
¼ 0. (41a)
	
 in the ‘viscous fluid’ case:

ḠD2 �
Ī2O2

w2

� �
þ

1

w

ffiffiffi
2
p

2
ð1� iÞN̄

2
1Pm1=2O3=2 cot ð2

ffiffiffiffiffiffiffiffiffiffi
iO=m

p
Þ

 !

� �
M̄O2

w
þ P

ffiffiffiffiffiffi
O2

p
cot ð2

ffiffiffiffiffiffi
O2

p
Þ
3� 2imO

3

� �
¼ 0. ð41bÞ
Setting to zero the first multiplier in both these formulas yields the equation to determine the cut-on
frequency for structure-originated dominantly shear wave. The second one determines cut-on frequencies for
fluid-originated modes. As is seen, in the ‘acoustic’ case the cut-on frequency of the shear wave is linearly
dependant upon the ‘depth’ parameter w, whereas cut-on frequencies of fluid-originated modes increase slower
as w grows. Cut-on frequencies in ‘acoustic medium’ and ‘viscous fluid’ cases are fairly close to each other,
when the viscosity parameter m is sufficiently small. Comparison of Eqs. (31), (34), (41a,b) shows that fluid-
originated modes have smaller cut-on frequencies in the sandwich plate case than in the Kirchhoff plate case
for the same w. This fact can also be observed in comparison of Figs. 3 and 6.
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Fig. 7. Dispersion curves obtained for three magnitudes of the depth parameter w: (a) real parts and (b) imaginary parts.
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The influence of parameters w, e and g on shape and location of dispersion curves is illustrated
in Figs. 7–9. The influence of the depth parameter w is illustrated in Fig. 7. Curves designated
by dots are plotted for w ¼ 10, by boxes for w ¼ 20 and by daggers for w ¼ 40. This parameter
influences cut-on frequencies of structure-originated shear mode and fluid-originated modes.
The influence of the geometry parameter e is illustrated in Fig. 8. Curves designated by dots are plotted for
e ¼ 0.15, by boxes for e ¼ 0.25 and by daggers for e ¼ 1. This parameter mainly influences cut-on
frequencies for structure-originated shear wave. Finally, the influence of the stiffness parameter g is illustrated
in Fig. 9. Curves denoted by dots correspond to g ¼ 0.0001, by boxes to g ¼ 0.0005 and by daggers to
g ¼ 0.0025.
5. Wave attenuation in a sandwich plate loaded by a layer of viscous compressible fluid

The analysis presented in the previous section has been aimed at identification of different types of ‘almost
propagating’ waves. However, from the practical viewpoint, it is important to assess the decay of these waves
as they travel a certain distance along the wave guide (a fluid-loaded sandwich plate). Let an incident wave
have the amplitude Ain at the ‘entry’ to the wave guide of the length L and the width 2H. Due to fluid viscosity,
this wave is attenuated and its amplitude becomes Aout at its outlet. The ratio of these amplitudes characterizes
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Fig. 8. Dispersion curves obtained for three magnitudes of the geometry parameter �: (a) real parts and (b) imaginary parts.
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the viscosity-induced decay,

Aout

Ain
¼ exp

L

2H
ReK

� �
; ReKo0. (42)

As is seen from Eq. (42), the level of wave attenuation is controlled by the magnitude of the real part of K.
The following notations are used in all figures presented in this section: curve A—structure-originated

‘flexural’ modes, curve B—structure-originated ‘shear’ modes, curve C—first fluid-originated modes, and
curve D—second fluid-originated modes. Curves denoted by dots in Fig. 10 correspond to the magnitude of
the depth parameter w ¼ 10, by boxes to w ¼ 20 and by daggers to w ¼ 40. The parameters of sandwich plate
composition are e ¼ 0.25, g ¼ 0.0001, d ¼ 0.1. It is supposed that variation of w is achieved by variation of the
thickness of a plate h, since in this figure the following scaling is used: K ¼ kH, O ¼ oH=cfl. The depth
parameter w has significant influence on the attenuation of structure-originated mode (the increase in w,
produced by the decrease in the thickness of a plate, h, leads to more efficient attenuation). On the other hand,
it weakly influences attenuation of the fluid-originated modes. In Fig. 11, designation of curves is similar to
Fig. 10, but here it is supposed that the depth of a fluid layer H varies to achieve changes in the magnitude of
the depth parameter w, whereas the thickness of a skin ply does not vary. Curves denoted by dots correspond
to w ¼ 10, by boxes to w ¼ 20 and by daggers to w ¼ 25. In this figure, the ‘standard’ scaling K ¼ kh, O ¼
oH=cpl is recovered. As expected, large thickness of fluid layer induces more intensive attenuation of fluid-
originated modes (curves C). As is also seen from this figure, there is a very insignificant influence of this
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Fig. 9. Dispersion curves obtained for three magnitudes of the stiffness parameter g: (a) real parts and (b) imaginary parts.

Fig. 10. Real parts of wavenumbers of viscosity-attenuated waves for various magnitudes of the depth parameter w (H is kept constant),

sandwich plate.
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Fig. 11. Real parts of wavenumbers of viscosity-attenuated waves for various magnitudes of the depth parameter w (h is kept constant),

sandwich plate.

Fig. 12. Real parts of wavenumbers of viscosity-attenuated waves for various magnitudes of the geometry parameter e, sandwich plate.
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parameter on attenuation of structure-originated modes (location of A and B curves is virtually not affected
by variation in w).

The influence of the geometry parameter � is illustrated in Fig. 12. Other parameters of sandwich plate
composition are g ¼ 0.0001, d ¼ 0.1. The depth parameter is set to w ¼ 10. Curves denoted by dots correspond
to e ¼ 0.15, by boxes to e ¼ 0.25 and by daggers to e ¼ 1. As is seen, the rate of decay is not a monotonous
function of the frequency parameter for the first structure-originated mode (curves A). For each magnitude of
the geometry parameter, it is possible to indicate a frequency, at which attenuation is minimal. This
phenomenon can be readily explained by inspection into the dependence of modal coefficients of the
considered wave upon frequency. These modal coefficients define ‘proportion’, in which the structure and the
fluid are involved in formation of the wave in the coupled system. The participation of fluid motion is minimal
exactly at the frequency, which yields the minimum in attenuation. Finally, the influence of stiffness parameter
g is illustrated in Fig. 13. Curves designated by dots correspond to g ¼ 0.0001, by boxes to g ¼ 0.0005 and by
daggers to g ¼ 0.0025. Other parameters are e ¼ 0.25, d ¼ 0.1 and w ¼ 10. The stiffness parameter g has
significant influence only on the shear-mode cut-on frequencies (and on attenuation of corresponding modes).

To have a practical assessment of the decay rate of different waves, consider a sandwich plate with steel
skins of thickness 0.5mm with a PVC core of thickness 2mm. A layer of viscous compressible fluid has the
width of 5mm. The attenuation distance is taken to be 1m along the plate. The fluids are selected as petrol,
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Fig. 13. Real parts of wavenumbers of viscosity-attenuated waves for various magnitudes of the stiffness parameter g, sandwich plate.

Table 1

Free wave attenuation rate

Fluid Kinematic viscosity

(cSt)

Structure-originated

flexural wave (%)

Structure-originated shear

wave (%)

Fluid-originated wave (%)

Petrol 6.8636� 10�7 0.02 2.41 8.68

Water 9.32039� 10�7 0.31 3.95 10.1

Acetone 1.6535� 10�6 0.32 2.82 12.93

Olive oil 0.00009 6.67 24.74 62.76

Glycerine 0.000718 45.55 68.97 77.36
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water, acetone, olive oil and glycerine. The frequency is selected as 35.5 kHz to ensure co-existence of three
propagating waves in a wave guide (A-, B- and C-waves in the terminology of this section). The decay rate in
percent for each of these waves is presented in Table 1. As is seen from this data, the fluid-originated wave is
attenuated more severely than all other ones in the same excitation conditions. This is an obvious result. As is
also expected, the attenuation of the shear wave is always stronger than the attenuation of the flexural wave,
because the shear mode has larger involvement of fluid motion, than the flexural mode. As can be seen, a fluid
of low viscosity (e.g., water) produces weak attenuation. Nonetheless, there might be cases, when even decay
in a few percent in the amplitude of a wave, which is expected to be purely travelling, is important. Highly
viscous fluids produce very substantial attenuation of waves of all types. It should also be observed that a layer
of viscous compressible fluid with ‘lubrication-size’ width would certainly produce significant suppression of
the wave propagation.

6. Conclusions

The problem of wave propagation in an elastic structure under heavy fluid loading is typically formulated
within the framework of the classical model of an acoustic medium. However, in the cases when fluid occupies
a long narrow gap between two parallel or co-axial rigid and/or elastic surfaces, this model is inadequate
because the attenuation of a travelling wave due to fluid viscosity becomes substantial. This phenomenon is
modelled and analysed in this paper. It is found that even in the case of water-loaded structures, the
attenuation of ‘almost propagating’ waves may be noticeable and the level of attenuation is influenced
differently by various parameters involved in the problem formulation. The viscosity-induced attenuation
becomes more significant in the case of a fluid-loaded sandwich plate, than in the case of a conventional plate,
because sandwich composition inflicts a strong fluid–structure coupling due to its relatively high compliance to
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tangential ‘sliding’ deformation. As soon as more ‘exotic’ fluids, than water, are concerned, the wave
attenuation may reach very high level. The reported methodology may readily be extended to capture the
energy dissipation within material of the plate (which can be rather large in the core ply of the sandwich plate),
but the energy dissipation in the viscous fluid assessed in this paper should remain the same.

Appendix. Coefficients in dispersion equations
1.
 Coefficients in dispersion equation (29) for a Kirchhoff plate loaded by viscous fluid:

T1 ¼
D2

w3
K4D̄1 �

1

w
O2,

T2 ¼ 2 2a2 þ 4K2 þ 3i
O
m

� �
K2

w
S11 � 2bS12

� �
� 3

K2

w
ðb2 þ K2Þ

a
w

S21 þ 2S22

� �

� 6
K2a
w

K2

w
S31 þ 2bS32

� �
þ 12bK2 a

w
S41 þ 2S42

� �
,

S ¼ ðab cos a sin b� K2 sin a cos bÞðab sin a cos b� K2 cos a sin bÞ,

S11 ¼ �abðcos 2a cos 2b� 1Þ � K2 sin 2a sin 2b,

S12 ¼ �ab cos 2a sin 2bþ K2 sin 2a cos 2b,

S21 ¼ �ð�ab sin 2a cos 2bþ K2 cos 2a sin 2bÞ,

S22 ¼ �ð�abðcos 2a cos 2b� 1Þ � K2 sin 2a sin 2bÞ,

S31 ¼ �ab sin 2a cos 2bþ K2 cos 2a sin 2b,

S32 ¼ ab sin 2a sin 2bþ K2ðcos 2a cos 2b� 1Þ,

S41 ¼ �ðab sin 2a sin 2bþ K2ðcos 2a cos 2b� 1ÞÞ,

S42 ¼ �ðab cos 2a sin 2b� K2 sin 2a cos 2bÞ,

w ¼
H

h
; P ¼

rfl
rpl

; D ¼
cpl

cfl
.

2.
 Coefficients in dispersion equation (39) for a sandwich plate loaded by viscous fluid:

T1 ¼
D4

w6
K6D̄1D̄2 �

D4

w4
K4ḠðD̄1 þ D̄2Þ þ

D2

w6
K4O2ðD̄2Ī1 þ D̄1Ī2Þ

�
D2

w4
K2O2ðḠĪ1 þ ḠĪ2 þ M̄D̄2Þ þ

1

w6
K2O4Ī1Ī2 þ

D2

w2
M̄ḠO2 �

1

w4
M̄Ī2O4,
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T2 ¼ 2a2 þ 4K2 þ 3i
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T3 ¼ � 6abK2ððb2 þ K2ÞðS22S41 � S21S42Þ þ 2ð�K2S31S42 þ abS32S41ÞÞ
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.
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